

Intro to Machine Learning Workshop Day 2

Dr.Reem Alotaibi

February 27th 2022

Dr.Reem Alotaibi — Intro to Machine Learning Workshop

1 Day 1 Revision

- 2 Supervised Learning
- 3 Unsupervised Learning

1 Day 1 Revision

- 2 Supervised Learning
- 3 Unsupervised Learning

Revision

- Machine learning process (get data, pre-processing, train the model, test the model, refine the model).
- Supervised learning vs unsupervised learning.
- Training vs test data.
- Train-test vs k-cross validation.

1 Day 1 Revision

- 2 Supervised Learning
- 3 Unsupervised Learning

Input space Features, attributes, variables, covariate

Classification: Categorical or discrete target

Training set

ペロト < 聞 ト < 臣 ト < 臣 ト 三 の < (で)</p>

K-Nearest Neighbour (KNN) Algorithm

Detecting Prostate Cancer

- The dataset consists of 100 observations and 10 variables.
- 8 numeric variables and one categorical variable(ID).
- The task is to classify the tumour into benign (B) and malignant (M).

-	$\mathrm{id}^{-\hat{v}}$	diagnosis_result $\ ^{\diamond}$	radius 🌼	texture $^{\circ}$	perimeter $^{\circ}$	area 🔅	smoothness $^{\circ}$	compactness $^{\diamond}$	symmetry $\hat{}$	fractal_dimension $\hat{}$
1	1	м	23	12	151	954	0.143	0.278	0.242	0.079
2	2	В	9	13	133	1326	0.143	0.079	0.181	0.057
3	3	м	21	27	130	1203	0.125	0.160	0.207	0.060
4	4	м	14	16	78	386	0.070	0.284	0.260	0.097
5	5	м	9	19	135	1297	0.141	0.133	0.181	0.059

Learn the KNN model with k=5

```
2
3 library(class)
4 model = knn(train_split, test_split , train_target, k=5)
5
```


K-Nearest Neighbour (KNN) Algorithm

1	model		
test_target	В	I M	Row Total
		-	
BI	8	1	I 9 I
1	2.722	2.722	I I
1	0.889	0.111	0.375 I
1	0.667	0.083	I I
1	0.333	0.042	I I
		-	
M I	4	11	I 15 I
I I I I I I I I I I I I I I I I I I I	1.633	1.633	I I
1	0.267	0.733	0.625
1	0.333	0.917	I I
1	0.167	0.458	I I
		-	
Column Total	12	l 12	I 24 I
1	0.500	0.500	I I
		-	

Dr.Reem Alotaibi — Intro to Machine Learning Workshop

ヘロト 人間 トイヨト イヨト

K-Nearest Neighbour (KNN) Algorithm

Tips

- KNN performs much better when variables are normalized because higher range variables can bias it.
- Missing data will mean that the distance between samples can not be calculated. These samples could be excluded or the missing values could be imputed.
- The k parameter is often an odd number to avoid ties in the voting scores.
- How to select appropriate k value? sqrt(n)?
- KNN is suited for lower dimensional data.

Classification

Training Data

Model: Decision Tree

ヘロト ヘヨト ヘヨト ヘヨト

Important Terminology

- Root Node: it represents entire population or sample and this further gets divided into two or more homogeneous sets.
- Splitting: the process of dividing a node into two or more sub-nodes.
- Decision/Internal Node: when a sub-node splits into further sub-nodes, then it is called decision node.
- Leaf/Terminal Node: nodes do not split is called Leaf or Terminal node.

Note:- A is parent node of B and C.

Classification Decision Trees Algorithm

Fit the tree for the Prostate Cancer dataset

- Use rpart package
- "class" for classification, "anova" for regression.

Fit the model using rpart.

Print the summary.

```
3
4 library(rpart)
5 fit <- rpart(diagnosis_result ~ . ,train_split, method="class")
6</pre>
```

Classification

Tips

- Overfitting
 - Pruning.
 - Setting constraints on tree size (minimum number of observations at leaf, maximum depth).
- Splitting criteria (gini index, information gain, chi square).Random forest algorithm.

Input space Features, attributes, variables, covariate

			<u> </u>		
		Month	Temp	Ice cream sales	
			С	SAR/Day	
-	1	Jan	15	501	
	2	Feb	20	550	Output space
	3	March	25	600	Target
	4	April	27	900	
	5	May	30	1050	
		June	35	?	~

Regression: Numerical or continues target

Training set

Problem

- Help you to predict the dependent variable y using independent variable x.
- $\bullet y = ax + b$
 - *y* is the dependent variable.
 - x is the independent variable.
 - *a* and *b* are constant. a is the slope and *b* is the intercept.

Dr.Reem Alotaibi - Intro to Machine Learning Workshop

- Predict the Ozone using the solar radiation.
- Create a relationship model using lm() function.
- Print the summary.

```
model1<-lm(Ozone~Solar.R, data=airquality)
summary(model1)</pre>
```


Find the coefficients from the model.

■ Ozone= 0.12717 Solar.R + 18.59873

Coefficients:

Estimate Std. Error t value Pr(>Itl) (Intercept) 18.59873 6.74790 2.756 0.006856 ** Solar.R 0.12717 0.03278 3.880 0.000179 ***

- To predict the Ozone, use the predict() function in R.
- 3
- 4 Solar.R=185.93
- 5 new_data=data.frame(Solar.R)
- 6 pred_oz=predict(model1,new_data)
- 7 pred_oz

Slope

■ slope=
$$\frac{y_2 - y_1}{x_2 - x_1}$$

Dr.Reem Alotaibi - Intro to Machine Learning Workshop

Tips

- Use regression lines when there is a significant correlation to predict values.
- Stay within the range of the data. Do not extrapolate!! For example, if the data is from 10 to 60, do not predict a value for 400.

1 Day 1 Revision

- 2 Supervised Learning
- 3 Unsupervised Learning

Clustering: Hidden target

Dr.Reem Alotaibi — Intro to Machine Learning Workshop

Dr.Reem Alotaibi — Intro to Machine Learning Workshop

K-means Algorithm

• K Means Clustering is an unsupervised learning algorithm that tries to cluster data based on their similarity.

K-means Algorithm

- **1** Select K centroids randomly.
- 2 Assign each data point to its closest centroid.
- 3 Recalculate the centroids as the average of all data points in a cluster.
- 4 Continue steps 2 and 3 until the observations are not reassigned or the maximum number of iterations (R uses 10 as a default) is reached.

- We would like to cluster the attitude dataset with the responses from 30 departments.
- Use kmeans() function.

```
data(attitude)
set.seed(7)
km1 = kmeans(attitude, 2)
km1
```


View the clusters.

K-means clustering with 2 clusters of sizes 14, 16

Cluster means:

rating complaints privileges learning raises critical advance 1 74.0000 77.78571 60.14286 65.28571 71.71429 76.85714 47.71429 2 56.4375 56.81250 47.00000 48.56250 58.43750 72.93750 38.75000

Dr.Reem Alotaibi — Intro to Machine Learning Workshop

Example

```
Plot subset of the data.
```

Dr.Reem Alotaibi — Intro to Machine Learning Workshop

K-Means result with 2 clusters

Tips

- K can be assigned by experts.
- Clusters can be evaluated using:
 - Elbow method.
 - Silhouette analysis.

Elbow method

Check for the optimal number of clusters given the data.

```
# Check for the optimal number of clusters given the data
for (i in 1:15)
wss[i] <- sum(kmeans(attitude,centers=i)$withinss)
plot(1:15, wss, type="b", xlab="Number of Clusters",
    ylab="Within groups sum of squares",
    moin="Assessing the Optimal Number of Clusters",pch=20, cex=2)
```


Assessing the Optimal Number of Clusters

Number of Clusters

1 Day 1 Revision

- 2 Supervised Learning
- 3 Unsupervised Learning

Summary

Wrap-up

- KNN and decision trees algorithms can be used for both classification regression tasks.
- K-means is a simple clustering algorithm but it is sensitive to outliers.
- K-medoids instead of K-means.

Day 3

Try some real-world problems.